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ABSTRACT:r: Only true experiments offer definitive evidence for causal inferences, but not all educa-

tional interventions are readily amenable to experiments. Correlational evidence can at least tenta-

tively inform evidence-based practice when sophisticated causal modeling or exclusion methods are

employed. Correlational evidence is most informative when exemplary practices are followed as re-

gards (a) measurement, (b) quantifying effects, (c) avoiding common analysis errors, and (d) using

confidence intervals to portray the range of possible effects and the precisions of the effect estimates.

I
n their recent article in the Educational They defined scientific culture as "a set of norms
Researcher, Feuer, Towne, and Shavel- and practices and an ethos of honesty, openness,
son (2002) asked, ^rid continuous refiection, including how research

quality is judged' (Feuer, Towne, & Shavelson,
2002, p. 4, italics added). Recent movements to

What are the most effective means of stimukt- emphasize evidence-based practice in medicine
ing more and better scientific educational re- (see Sackett, Straus, Richardson, Rosenberg, &
search?... \T\[itprimary emphasis [ita\\cs zAAeii] Haynes, 2000), psychology (see Chambless,
should be on nurturing and reinforcing a scien- 1998), and education (Mosteller & Botuch,
tific culture of educational research, (p. 4) 2002; Shavelson & Towne, 2002) also refiect the
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necessity for standards with which to evaluate re-
search evidence, including evidence from correla-
tional designs.

WHAT IS CORRELATIONAL

EVIDENCE?

Correlational studies can be defined in various
ways. In one sense, all analyses are correlational
(Cohen, 1968; Knapp, 1978; Thompson, 2000a).
Because all conventional parametric analyses (e.g.,
^tests, ANOVA, ANCOVA) are correlational
(Bagozzi, Fornell, & Larcker, 1981), in a sense
every quantitative study yields correlational evi-
dence. Distinguishing evidence types by focusing
on the analysis is not useful because under such a
broad definition, all evidence would fall under
this single umbrella. Furthermore, a given analysis
(e.g., multiple regression) can be correctly em-
ployed to analyze data from numerous designs
(e.g., a true experiment, a comparative design). A
more useful distinction regarding types of evi-
dence focuses not on the analysis, but on the de-
sign of the study yielding the evidence.

Correlational studies are quantitative, multi-
subject designs in which participants have not been
randomly assigned to treatment conditions. Analytic
methods commonly (but not exclusively) applied
with such designs are multiple regression analysis,
canonical correlation analysis, hierarchical linear
modeling, and structural equation modeling.

For example, as defined here, a correlational
study might investigate differential achievement
levels of students enrolled in classes of different
sizes, where the students were not randomly as-
signed to classes of given sizes. Or researchers
might collect data regarding the frequency with
which teachers praise students, to examine rela-
tionships of these behaviors with students' self-
concepts and school attendance.

HOW CAN C O R R E L A T I O N A L

E V I D E N C E I N F O R M P R A C T I C E ?

Definitive causal conclusions in quantitative re-
search can only be reached on the basis of true
randomized trials. That is why it is so important
for educational researchers to conduct more true
experiments. Historically, randomization has been

too infrequently invoked within the social sci-
ences (Ludbrook & Dudley, 1998). However, for
various reasons, evidence from types of research
not involving randomized clinical trials is also rel-
evant to evidence-based practice.

It is crucial to match research questions and
research designs, and some questions are best ad-
dressed with nonexperimental designs. For exam-
ple, questions involving school or classroom
culture may require qualitative methods, and
questions involving the intensive study of learning
dynamics of individual children may require sin-
gle-subject studies. Even when group quantitative
methods are appropriate, randomized experi-
ments may not be ideal if the immature state of
knowledge on a given issue does not yet justify
the expense of such trials. And in some cases clin-
ical trials may raise ethical questions regarding de-
nial of needed services to control group
participants. Not all questions can be addressed
with clinical trials, and unduly widespread use of
clinical trials would also be undesirable because
cross-contamination of effects across children in-
volved in multiple experiments would then com-
promise all results.

Correlational designs do not provide the
best evidence regarding causal mechanisms. Nev-
ertheless, in at least two ways correlational evi-
dence can be used to inform causal inferences and
thus evidence-based practice. The first approach is
statistically based, and involves statistically testing
rival alternative causal models, even though the
design is correlational. The second method is logic
based and invokes logic and theory with nonex-
perimental data in an attempt to rule out all rea-
sonable alternative explanations in support of
making a single plausible causal inference.

STATISTICAL TESTING OF RIVAL

CAUSAL MODELS

The analytic methods that today we call structural
equation modeling (SEM; or covariance structure
analysis) originated in the work of Karl Joreskog
(e.g., 1969, 1970, 1971, 1978), and the com-
puter program, LISREL (i.e., analysis of Z/near
Structural /f£Zationships) developed by Joreskog
and his colleagues (e.g., Joreskog & Sorbom,
1989). These methods as originated in the 1960s
and 1970s were then often called causal modeling.
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which hints at the potential of SEM to inform
causal inferences.

SEM incorporates factor (or measurement)
models, building on the factor analytic methods
proposed by Spearman (1904), and a structural
model linking these latent constructs, building on
the path analytic methods proposed by Wright
(1921, 1934). Within the structural model, ana-
lysts may test whether (a) two latent constructs {X
and V) covary or are correlated, (b) X causes Y,
(c) V causes X, or (d) X and Y reciprocally cause
each other.

The appeal of SEM is that rival models can,
and indeed should, be tested (see Thompson,
2000b). If only one of these four models fits the
data (e.g., a model specifying that X causes Y),
then there is at least some evidence bearing on the
existence of a causal relationship.

For example, data reported by Bagozzi
(1980) have been used in several reports to illus-
trate this application (see Joreskog & Sorbom,
1989, pp. 151-156, and Thompson, 1998b, pp.
37—39). Bagozzi's study investigated the job satis-
faction and job performance of 122 workers. For
these data, it appeared that a model positing that
job performance leads to job satisfaction better fit
the data than did models positing that job satis-
faction leads to job performance or that satisfac-
tion and performance are reciprocally related.

LOGICALLY-BASED EXCLUSION METHODS

In some cases when true experiments are not per-
formed, and even when structural modeling is not
used, we still may be able to reach causal infer-
ences with some degree of confidence. The capac-
ity for extracting causal information from
nonexperimental designs (e.g., intervention stud-
ies not invoking random assignment to groups)
turns on our capacity to evaluate whether all rele-
vant preintervention differences and design valid-
ity threats can be excluded (i.e., deemed
essentially irrelevant).

For example, let's say two intact (i.e., not
randomly assigned) groups of special education
students were taught reading with two different
curricula. We want to make some causal interpre-
tation of the postintervention reading differences
in the two conditions. We might investigate
preintervention differences in the students on
everything that we consider as being even poten-

Definitive causal conclusions in quantita-
tive research can only be reached on the
basis of true randomized trials.

tially relevant (e.g., preintervention reading scores,
socioeconomic status). We might also try to con-
firm that there were no meaningful extraneous
contaminants of treatment influences (e.g., teach-
ers had similar backgrounds in both conditions,
curricula were implemented with fidelity). If we
can rule out all such problems, we may have at
least some plausible evidence that one curriculum
is superior to the other curriculum, even though
we have not performed a true experiment, and we
have not statistically tested rival causal models.

The challenge to such efforts is that we may
not be certain exactly which preintervention dif-
ferences or what design validity threats are rele-
vant in a given study. The beauty of true
experiments is that the law of large numbers cre-
ates preintervention group equivalencies on all
variables, even variables that we do not realize are
essential to control.

But exclusion methods may be necessary in
an environment where true experiments can not
be used to address every important intervention
question. And as our knowledge base grows, we
may become more certain regarding which prein-
tervention differences or treatment confounds are
most noteworthy.

LIMITATIONS OF NONEXPERIMENTAL

RESEARCH

Both statistical modeling and logical exclusion
methods require that models are "correctly speci-
fied." That is, the analytic results are sound only
to the extent that

• All the correct variables, and only the correct
variables, are employed within the tested
models.

• The correct dynamics (e.g., mediation, moder-
ation) are specified within the tested models
(i.e., the correct analysis is used).

But as Pedhazur (1982) has noted, "The
rub, however, is that the true model is seldom, if
ever, known" (p. 229). And as Duncan (1975) has
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noted, "Indeed it would require no elaborate
sophistry to show that we will never have the
'right' model in any absolute sense" (p. 101).
Thus, both methods must be used cautiously in
applying correlational evidence to help inform ev-
idence-based practice. Nevertheless, correlation
evidence, like other nonexperimental evidence, is
relevant to evidence-based practice.

PURPOSE OF THE PRESENT

ARTI CLE

Educational research has sometimes been criticized
for being poorly conducted (see Gall, Borg, &
Gall, 1996, p. 151). For example, the National
Academy of Science evaluated educational research
genericaJly and found "methodologically weak re-
search, trivial studies, an infatuation with jargon,
and a tendency toward fads with a consequent frag-
mentation of effort" (Atkinson & Jackson, 1992,
p. 20). Nevertheless, even imperfect studies may
provide some useful information. Few defects in
published studies are sufficiently egregious to war-
rant total disqualification from any consideration.

A possible exception to this generalization
encompasses studies using stepwise methods
(Snyder, 1991). As Huberty (1994) noted, "It is
quite common to fmd the use of 'stepwise analy-
ses' reported in empirically based journal articles"
(p. 261). Thompson (1995, 2001) explained that
stepwise methods (a) do not correctly identify the
best subset of predictors, (b) yield results that
tend to be nonreplicable, and (c) "are positively
Satanic in their temptations toward Type I errors"
(Gliff, 1987, p. 185), because most computer pro-
grams incorrectly compute the degrees of freedom
for stepwise analyses. When researchers must se-
lect a subset of variables from a larger constella-
tion of choices, the "all-possible-subsets" analyses
described by Huberty (1994), and available in
SAS, provide reasonable results.

The present article proposes some quality
indicators for evaluating correlational research in
efforts to inform evidence-based practice. Given
the inherent challenges of educational research
(Berliner, 2002), most studies are unavoidably
imperfect and vary in the quality of the evidence
they provide.

The quality indicators proposed are not
new. But they may be insufficiently honored in
contemporary analytic practice. For example, var-
ious effect size statistics have been proposed for
decades (Huberty, 2002), but studies have shown
effect sizes to be reported in less than half the
published articles in various journals and various
disciplines (see Thompson, 1999b; Vacha-Haase,
Nilsson, Reetz, Lance, &, Thompson, 2000).
Similarly, confidence intervals have been recom-
mended for years (see Ghandler, 1957), but em-
pirical studies suggest that intervals are
infrequently reported in published social science
research (Kieffer, Reese, & Thompson, 2001).

The quality indicators presented are
grouped into four sets: (a) measurement; (b) prac-
tical and clinical significance; (c) avoidance of
some common analytic mistakes; and (d) confi-
dence intervals for score reliability coefficients,
statistics, and effect sizes. These are not the only
indicator categories that might be identified, but
the present categories will serve reasonably well to
distinguish some recognizable features of correla-
tional inquiry. Where space limitations preclude
in-depth exploration of concerns, helpful refer-
ences providing fiirther elaboration are routinely
provided.

MEASUREMENT

The quality of the evidence informing practice is
inherently limited by the psychometric integrity
of the data being analyzed in a given study. Glassi-
cally, measurement concerns are conceptualized as
involving two primary considerations: score relia-
bility and score validity. However, some modern
measurement theories actually present a unified
view of these concerns, such that reliability and
validity issues are blended (Brennan, 2001).

Reliability can be conceptualized as address-
ing the question, "Do the scores measure any-
thing?" (i.e., are nonrandom), and validity
addresses the question, "Do the scores measure
only the correct something that they are supposed
to measure?" (Thompson, 2003). In this classical
measurement view, reliability is a necessary but
insufficient condition for validity.

Researchers have traditionally recognized
that score validity is not immutable within a
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given measure; the same measure may yield scores
valid for some purposes and respondents, and in-
valid for other inferences or respondents (Schmidt
& Hunter, 1977). Lately, more researchei:s have
come to realize in a similar vein that a given test
also is not immutably reliable. As Wilkinson and
the American Psychological Association (APA)
Task Force on Statistical Inference (1999) recently
emphasized:

It is important to remember that a test is not re-
liable or unreliable Thus, authors should pro-
vide reliability coefficients of the scores for the
data being analyzed even when the focus of their
research is not psychometric, (p. 596)

Unfortunately, recent empirical studies of pub-
lished research reports indicate that the vast pre-
ponderance of articles do not even mention
reliability, much less report reliability for the data
actually being analyzed (Vacha-Haase, Henson, &
Caruso, 2002). These practices may originate in
misconceptions that tests are reliable, and that
once reliability has been established in a given
sample, further concerns are mdot (Thompson,
2003; Vacha-Haase, 1998).

A problematic practice is to "induct" the re-
liability coefficient from a prioi: study or a test
maniial (Vacha-Haase et al., 2002). Unfortu-
nately, this induction of prior reliability coeffi-
cients turns on the premises that (a) the samples
are comparable in their compositions and (b) the
scores are roughly equivalent in their standard de-
viations across studies (Crocker & Algina, 1986,
p. 144). Sadly, empirical studies suggest that such
inductions are almost never explicitly justified
and often are wildly inappropriate (Vacha-Haase,
Kogan, &C, Thompson, 2000; Whittington,
1998). It is unacceptable to induct the score relia-
bility coefficients from prior studies or test manu-
als if there is no explicit evidence presented that
the sample compositions and the standard devia-
tions from the prior study and a current study are
both reasonably comparable.

Quality Indicators:

• Score reliability coefficients are reported for all
measured variables, based on inductioh from a
prior study or test manual, with explicit and
reasonable justifications as regards comparabil-
ities of (a) sample compositions and (b) score
dispersions.

Recent empirical studies of published
research reports indicate that the vast
preponderance of articles do not even
mention reliability, much less report relia-
bility for the data actually being ana-
lyzed.

• Score reliability coefficients are reported for all
measured variables based on analysis of the
data in hand in the particular study.

• Evidence is iiiducted, with explicit rationale,
from a prior study or test manual that suggests
scores are valid for the inferences being made
in the study.

• Score validity is empirically evaluated based on
data generated within the study.

• The influences of score reliability and validity
on study interpretations are explicitly consid-
ered iti reasonable detail.

P R A C T I C A L A N D C L I N I C A L

S I G N I F I C A N C E

Statistical significance estimates the probability, p,
of sample results, given the sample size, and as-
suming the sample came from a population ex-
actly described by the null hypothesis (Cohen,
1994; Thompson, 1996). In disciplines as diverse
as wildlife sciences and psychology, the utility of
statistical significance has been increasingly ques-
tioned in recent years (Anderson, Burnham, &
Thompson, 2000; see Harlow, Mulaik, & Steiger,
1997 and Nickerson, 2000 for comprehensive
summaries of both sides of the controversy). In-
deed, a forthcoming issue of the Journal ofSocio-
Economics (see Thompson, in press-b) will include
commentary by several economics Nobel laureates
on this issue.

Practical significance evaluates the potential
noteworthiness of study results, by quantifying
the degree to which sample results diverge from
the null hypothesis (Snyder & Lawson, 1993).
These quantifications are ofben referred to generi-
cally as "effect sizes." There are literally dozens of
effect size statistics (see Kirk, 1996). Many of
these myriad choices can be arrayed within the
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following categories: (a) standardized differences
(e.g., Cohen's d. Glass's A), (b) "uncorrected" vari-
ance-accounted-for (e.g., T\^, R^), and (c) "cor-
rected" variance-accounted-for (e.g., adjusted R^,
(ip-; see Thompson, 2002a). Thompson (in press-
a). Kirk (1996), and Snyder and Lawson (1993)
provide reviews on the numerous available
choices.

Clinical significance evaluates the extent to
which intervention recipients no longer meet di-
agnostic criteria (e.g., learning disability, depres-
sion), and, thus, no longer require specialized
intervention (Jacobson, Roberts, Berns, &
McGlinchey, 1999; Kendall, 1999). Clinical sig-
nificance is potentially relevant only when the
outcome variable can be interpreted using ac-
cepted diagnostic criteria (e.g., total cholesterol
greater than 200 milligrams).

The fifth edition of the APA (2001) Publi-
cation Manual emphasized that

It is almost always necessary to include some
index of effect size or strength of relationship
The general principle to be followed...is to pro-
vide the reader not only with information about
statistical significance but also with enough in-
formation to assess the magnitude of the ob-
served effect or relationship, (pp. 25—26,
emphasis added)

The manual also describes failure to report effect
sizes as "a defect" (p. 5). But the editors of 23
journals have gone beyond the APA Publication
Manual and have published author guidelines re-
quiring effect size reporting (Fidler, 2002).

Jacob Cohen, in his various books on
power analysis, provided benchmarks for effect
sizes that he deemed small, medium, and large.
He formulated these based on his impressions of
the range of effect sizes typical of the social sci-
ence literature as a whole. He hesitated to provide
such benchmarks because he felt that effects
ought to be interpreted instead against the criteria
of the researcher's values and related effects re-
ported in prior literature. However, he provided
these benchmarks of typicality because he felt that
researchers would be more likely to report effect
sizes if there were some standards for interpreting
them, pending the reporting of effect sizes be-
coming routine within the literature. But "if peo-
ple interpreted effect sizes [using fixed

benchmarks] with the same rigidity that a = .05
has been used in statistical testing, we would
merely be being stupid in another metric"
(Thompson, 2001, pp. 82-83).

Glass, McGaw, and Smith (1981) argued
that "there is no wisdom whatsoever in attempt-
ing to associate regions of the effect-size metric
with descriptive adjectives such as 'small,' 'moder-
ate,' 'large,' and the like" (p. 104). The only ex-
ception to this rule involves groundbreaking
inquiry in which little or no previous research has
been conducted, in which case Cohen's bench-
marks may be useful as a (very) rough guide.

The problem is not the use of adjectives
such as large or small. The problem is using fixed,
generic benchmarks for making these judgments,
rather than consulting the effects in related stud-
ies.

The results of a single study have theaning
primarily as regards what they contribute to a lit-
erature, although, of course, the results of a single
study sometimes do change thinking about a phe-
nomenon (Thompson, in press-a). The compari-
son of effects against those reported in related
prior studies enables researchers to evaluate the
consistency of results across studies. This power-
ful view of all quantitative research as requiring
"meta-analytic thinking" (Cumming & Finch,
2001; Thompson, 2002b) is promoted by inter-
preting results across studies. Such direct compar-
isons also alert researchers to inconsistent
findings, which may highlight moderator vari-
ables or situations in which results vary across dif-
ferent subpopulations.

COMMON MISTAKES

Even today when 23 journals (see McLean &
Kaufman, 2000; Snyder, 2000) require effect
size reporting, effect size reporting is more the
exception than the norm (see Thompson,
1999b; Vacha-Haase, Nilsson et al., 2000). This
does make it more difficult to interpret the ef-
fects in a given study in direct, explicit compari-
son with the effect sizes reported in prior
studies, because effects must be computed or es-
timated for prior studies in which authors did
not report effect sizes.

Effect sizes should be reported for all pri-
mary study outcomes, even when particular re-
sults are not statistically significant (Thompson,
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2002b). Such reporting facilitates future meta-
analytic integration of the study into the corpus
of the literature.

Furthermore, some researchers do report,
but do not interpret, their effect sizes (Vacha-
Haase, Nilsson et al., 2000). Reporting, but not
interpreting, effect sizes does not allow effect sizes
to inform fully the interpretation of results.

A fundamental, but too common, mistake
is failing to identify which effect size is being re-
ported. Because there are so many different effect
sizes (see BGrk, 1996), some with different ranges
and properties, it is critical to identify reported ef-
fect statistics explicitly.

Finally, it is also important to recognize
that effect sizes cannot magically escape the limi-
tations or analytic assumptions of given analyses
(Olejnik & Algina, 2000). These limitations and
assumptions should be considered as part of result
interpretation.

Quality Indicators:

• One or more effect size statistics is reported for
each study primary outcome, and the effect
statistic used is clearly identified.

• Authors interpret study effect sizes for selected
practices by directly and explicitly comparing
study effects with those reported in related
prior studies.

• Authors explicitly consider study design and
effect size statistic limitations as part of effect
interpretation.

AVOIDANCE OF SOME COMMON

MACRO-ANALYTIC MISTAKES

Across the literature a range of analytic errors are
seen with some frequency. Some of these errors
are unique to a particular method. For example, it
is common for researchers to confuse descriptive
discriminant analysis with predictive discriminant
analysis, or vice versa, and consequendy to misin-
terpret their discriminant analysis results (see Hu-
berty, 1994; Kieffer et al., 2001). Other analytic
errors occur generally across analytic choices.

Research evidence better informs practice
when these errors are avoided. Here four such
common generic, macro-analytic errors are noted.

These can occur across two or more, or in some
cases, all correlational analytic methods.

FAILURE TO INTERPRET STRUCTURE

COEFEICIENTS

Throughout the general linear model (GLM),
weights are either explicitly (e.g., regression, de-
scriptive discriminant analysis) or implicitly (e.g.,
/^tests, ANOVA) applied to measured variables to
estimate the scores on the latent variables that are
actually the focus of the analysis (see Thompson,
2000a). These weights are given different names
across analyses (e.g., beta weights, factor pattern
coefficients, discriminant function coefficients),
which has the effect of obfuscating the existence
of the GLM.

When researchers obtain noteworthy ef-
fects, they commonly (and correctly) consult
these weights as part of the process of determin-
ing the origins of detected effects. However, these
weights are usually not correlation coefficients of
predictors with outcome variables. In fact, a pre-
dictor may have the largest nonzero weight in an
analysis even when the predictor is perfectly un-
correlated with the outcome variable (Thompson
&Borrello, 1985).

Structure coefficients (i.e., correlations of
measured variables with the latent variables actu-
ally being analyzed, such as regression Y scores)
are also usually essential to correct interpretation
(Courville & Thompson, 2001; Dunlap & Lan-
dis, 1998). For example, structure coefficients
have been characterized as essential to the correct
interpretation of multiple regression analysis
(Courville & Thompson), exploratory factor anal-
ysis (Gorsuch, 1983, p. 207), confirmatory factor
analysis (Graham, Guthrie, &, Thompson, 2003),
descriptive discriminant analysis (Huberty, 1994),
and canonical correlation analysis (Thompson,
1984).

Quality Indicators:

• GLM weights (e.g., beta weights) are inter-
preted as reflecting correlations of predictors
with outcome variables only in the exceptional
case that the weights indeed are correlation co-
efficients.

• When noteworthy results are detected, and the
origins of these effects are investigated, the in-
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Effect sizes should be reported for all pri-
mary study outcomes, even when particu-
lar results are not statistically significant.

terpretation includes examination of structure
coefficients.

CONVERTING INTERVALLY SCALED

VARIABLES TO NOMINAL SCALE

It is not uncommon (Pedhazur, 1982, pp.
452-453) to see researchers convert one or more
of their independent or predictor variables into
nominal scale in order to run OVA methods (e.g.,
ANOVA). For example, researchers may take in-
tervally-scaled pretest data (e.g., IQ scores, pretest
achievement scores) and characterize participants
as either "low" or "high" in learning aptitude.

Such dichotomization (trichotomization,
etc.) (a) "throws information away" (i.e., discards
score variability; Kerlinger, 1986, p. 558); (b) at-
tenuates reliability of the scores being analyzed;
(c) distorts variable distributions; and (d) distorts
relationships among variables (Thompson, 1986).
The result is analyses that are ecologically less
valid.

In her comprehensive Monte Carlo study,
Hester (2000) provided considerably more detail
on the consequences of such ill-considered ana-
lytic choices. The consequences of these conver-
sions are particularly deleterious for building an
integrated literature when different researchers
use divergent cutoffs (e.g., different sample-spe-
cific median splits) to implement the conversions.
For example, if researcher Jones dichotomizes
pretest IQ data at Jones's sample median of 95,
and researcher Smith does so at Smith's sample
median of 105, we will never know whether dis-
crepant ANOVA or MANOVA results are (a) an
artifact of using different cutpoints to di-
chotomize, or (b) a failure to replicate results.

Quality Indicator:

• Interval data are not converted to nominal
scale, unless such choices are justified on the
extraordinary basis of distribution shapes, and
the consequences of the conversion are
thoughtfully considered as part of result inter-
pretation.

INAPPROPRIATE UNIVARIATE METHODS

Univariate methods (i.e., analyses using a single
dependent variable) are quite commonly used in
educational research (KiefFer et al., 2001). These
methods can be quite appropriate for some stud-
ies. However, there are two situations in which
univariate methods are inappropriate.

First, univariate methods are generally inap-
propriate in the presence of multiple outcomes vari-
ables. The use of univariate methods when a study
involves several outcome variables (a) inflates the
probability of experimentwise Type I errors, and
(b) does not honor the reality that outcome vari-
ables can interact with each other to define
unique outcomes that are more than their con-
stituent parts (Fish, 1988).

Regarding the second concern, Thompson
(1999a) provided a heuristic data set illustrating
the importance of these issues. In his example
data set, the two means on Jf and Fdid not differ
to a statistically significant degree (both ANOVA
p values were .77A), and furthermore the ANOVA
eta-̂  effect sizes were both computed to be
0.469%. Thus, the two sets of ANOVA results
were not statistically significant, and they both in-
volved extremely small effect sizes. However, a
MANOVA/descriptive discriminant analysis
(DDA) of the same data yielded a PCALCULATED
value of .0002, and a multivariate eta^ of 62.5%!

This means that the Bonferroni correction
in the presence of several or many outcome vari-
ables is not suitable, for two reasons. First, the
correction lowers power against Type II error. Sec-
ond, multiple univariate analyses do not honor
the ecological reality that all the variables, includ-
ing the outcomes, can interact with each other to
create unique effects that will only be discovered
in a multivariate analysis.

Second, the use of univariate methods (e.g.,
ANOVA) post hoc to multivariate tests is inappro-
priate, albeit common (Kieffer et al., 2001). Put
simply, a MANOVA and several ANOVAs each
using the same measured outcome variables test
completely different and irreconcilable effects, be-
cause the ANOVAs do not consider the relation-
ships among the outcomes. These relationships
are an essential consideration in the multivariate
analyses, as illustrated in the Thompson (1999a)
heuristic example.
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In the words of Borgen and Seling (1978),
"When data truly are multivariate, as imphed by
the application of MANOVA, a multivariate fol-
low-up technique seems necessary to 'discover' the
complexity of the data" (p. 696). It is illogical to
first declare interest in a multivariate omnihus
system of variables, and then to explore detected
effects in this multivariate world by conducting
nonmultivariate tests.

A logical MANOVA post hoc method is
descriptive discriminant analysis, which Huberty
(1994) noted is "closely aligned to the study of ef-
fects determined by a multivariate analysis of vari-
ance (MANOVA)" (p. 30). Huberty (1994)
provided several chapters on using DDA post hoc
to MANOVA to assess and describe multivariate
dynamics.

Quality Indicators:

• Univariate methods are not used in the pres-
ence of multiple outcome variables.

• Univariate methods are not used post hoc to
multivariate tests.

FAILURE TO TEST STATISTICAL

ASSUMPTIONS

All statistical methods require that certain as-
sumptions (e.g., homogeneity of variance in
ANOVA, homogeneity of regression slopes in
ANCOVA) must be met in order for p values and
effect sizes to be accurate. Methodological as-
sumptions are never perfectly met, but must be at
least approximately met in order for results to be
approximately correct.

Empirical studies of published articles sug-
gest that statistical assumptions are too rarely
tested by researchers (Keselman et al., 1998).
These assumptions are more important than
many researchers may realize, as suggested by
Wilcox (1998) in his article titled, "How many
discoveries have been lost by ignoring modern
statistical methods?"

Statistical assumptions can be particularly
important when statistical corrections are in-
voked, as in ANCOVA, particularly when used
with nonrandom intact intervention groups (see
Thompson, 1992). Using ANCOVA when the
homogeneity of regression assumption is not met
leads to "tragically misleading analyses" that actu-
ally "can mistakenly make compensatory educa-

tion look harmful" (Campbell & Erlebacher,

1975, p. 597).

Quality Indicator:

• Persuasive evidence is explicitly presented that
the assumptions of statistical methods are suf-
ficiently well-met for results to be deemed
credible.

C O N F I D E N C E I N T E R V A L S F O R

R E L I A B I L I T Y C O E F F I C I E N T S ,

S T A T I S T I C S , A N D E F F E C T S I Z E S

Confidence intervals (CIs) can be used to deter-
mine whether a given null hypothesis would be
rejected. If a hypothesized value (e.g., r = 0; r =
.5) is not within the interval, the null hypothesis
positing the parameter value is rejected. However,
this use of confidence intervals does not tap the
primary positive features of using confidence in-
tervals (Thompson, 1998a, 2001).

Confidence intervals inform judgment re-
garding all the values of the parameter that appear
to be plausible, given the data (Cumming &
Finch, 2001). Thus, by comparing the overlaps of
confidence intervals across studies, researchers can
evaluate the consistency of evidence across studies
(Thompson, 2002b).

The widths of confidence intervals within a
study, or across studies, also provide critical infor-
mation regarding the precision of estimates in a
study or in a literature. When intervals are wide,
the evidence for a given point estimate being cor-
rect is called into question. Researchers may over-
interpret effects in a literature and not recognize
the imprecision of a body of literature, unless
confidence intervals are computed and directly
compared across studies.

For these various reasons, confidence inter-
vals are increasingly recognized as being "in gen-
eral, the best reporting strategy" and "the use of
confidence intervals is therefore strongly recom-
mended^ (American Psychological Association,
2001, p. 22, emphasis added). Of course, as Fi-
dler, Thomason, Cumming, Finch, and Leeman
(2004) pointed out, as with any other statistical
methods, CIs are not a panacea, and can be used
thoughtlessly.
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Univariate methods are generally inap-
propriate in the presence of multiple out-
comes variables.

COMMON MISTAKES

Some researchers misinterpret confidence inter-
vals as telling us how confident we may be (e.g.,
95%) that a given, single interval captures a pop-
ulation parameter, such as a correlational effect
size (e.g., r, r^). However, the confidence state-
ments when dealing with confidence intervals are
about a large or infinite set of intervals drawn
fi-om a population capturing the interval a given
percentage (e.g., 95%) of the time, and these con-
fidence statements are not about single intervals
(Thompson, 2002b).

We never know, unless we have the popula-
tion data (and then would not be computing a
CI), whether our single interval does or does not
capture a population parameter. The probabilities
of intervals capturing the population parameter
(e.g., r, r̂ ) may be different even for a series of
95% confidence intervals.

Confidence intervals can be computed for
(a) reliability coefficients (Fan & Thompson,
2001); (b) sample statistics (e.g., M, r); and (c)
effect sizes (Thompson, 2002b). CIs are so ap-
pealing because using intervals across studies will
ultimately lead us to the correct population value,
even if our initial expectations are wildly in error
(Schmidt, 1996)! Software for computing confi-
dence intervals for effect sizes is widely available
(Algina & Keselman, 2003; Cumming & Finch,
2001; Smithson, 2001; Steiger & Fouladi, 1992).
Kline's (2004) recent book provides a comprehen-
sive tutorial.

Quality Indicators:

• Confidence intervals are reported for the relia-
bility coefficients derived for study data.

• Confidence intervals are reported for the sam-
ple statistics (e.g., means, correlation coeffi-
cients) of primary interest in the study.

• Confidence intervals are reported for study ef-
fect sizes.

Confidence intervals are interpreted by direct
and explicit comparison with related CIs from
prior studies.

SUMMARY

Within the quantitative group-design genre, only
true experiments offer definitive evidence for
causal inferences that can inform evidence-based
instructional practice. But not all educational in-
terventions are readily amenable to experiments.
In addition, experimental studies of educational
interventions are compromised by cross-contami-
nation when students participate in multiple in-
terventions.

In such cases correlational evidence may be
usefiil in adducing complementary evidence. Cor-
relational studies can produce intriguing results
that are then subjected to experimental study.
And correlational evidence can at least tentatively
inform evidence-based practice when sophisti-
cated causal modeling (e.g., regression discontinu-
ity analyses) or exclusion methods are employed.
Correlational evidence is most informative when
exemplary practices are followed with regard to
(a) measurement, (b) quantifying effects, (c)
avoidance of common macro-analytic errors, and
(d) use of confidence intervals to portray the con-
sistency of possible effects and the precisions of the
effect estimates. Table 1 presents a list of the qual-
ity indicators suggested for research in this genre.
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TAB LE 1

Suggested Quality Indicators for Correlational Research

Measurement

1. Score reliability coefficients are reported for all
measured variables, based on induction from a
prior study or test manual, with explicit and rea-
sonable justifications as regards comparabilities of
(a) sample compositions and (b) score dispersions.

2. Score reliability coefficients are reported for all
measured variables, based on analysis of the data
in hand in the particular study.

3. Evidence is inducted, with explicit rationale, from
a prior study or test manual that suggests scores
are valid for the inferences being made in the
study.

4. Score validity is empirically evaluated based on
data generated within the study.

5. The influences of score reliability and validity on
study interpretations are explicitly considered in
reasonable detail.

Practical and Clinical Significance

6. One or more effect size statistics is reported for
each study primary outcome, and the effect statis-
tic used is clearly identified.

7. Authors interpret study effect sizes for selected
practices by directly and explicitly comparing
study effects with those reported in related prior
studies.

8. Authors explicitly consider study design and effect
size statistic limitations as part of effect interpreta-

Avoiding Some Common Macro-Analytic Mistakes

9. GLM weights (e.g., beta weights) are interpreted
as reflecting correlations of predictors with out-
come variables only in the exceptional case that
the weights indeed are correlation coefficients.

10. When noteworthy results are detected, and the
origins of these effects are investigated, the inter-
pretation includes examination of structure coeffi-
cients.

11. Interval data are not converted to nominal scale,
unless such choices are justified on the extraordi-
nary basis of distribution shapes, and the conse-
quences of the conversion are thoughtfully
considered as part of restilt interpretation.

12. Univariate methods are not used in the presence
of multiple outcome variables.

13. Univariate methods are not used post hoc to mul-
tivariate tests.

14. Persuasive evidence is explicitly presented that the
assumptions of statistical methods are sufficiently
well-met for results to be deemed credible.

Clsfor Reliability Coefficients, Statistics, and Effect Sizes

15. Confidence intervals are reported for the reliabil-
ity coefficients derived for study data.

16. Confidence intervals are reported for the sample
statistics (e.g., means, correlation coefficients) of
primary interest in the study.

17. Confidence intervals are reported for study effect
sizes.

18. Confidence intervals are interpreted by direct and
explicit comparison with related CIs from prior
studies.

Bagozzi, R. P. (1980). Performance and satisfaction in
an industrial sales force: An examination of their an-
tecedents and simultaneity. Journal of Marketing, 44,
65-77.

Bagozzi, R. P, Fornell, C , & Larcker, D. F. (1981).
Canonical correlation analysis as a special case of a
structural relations model. Multivariate Behavioral Re-
search, 16, 437^54.

Berliner, D. C. (2002). Educational research: The hard-
est science of all. Educational Researcher, 3/(8), 18—20.

Borgen, R H., & Seling, M. J. (1978). Uses of discrim-
inant analysis following MANOVA: Multivariate statis-
tics for multivariate purposes. Journal of Applied
Psychology, 63, 689-697.

Brennan, R. L. (2001). Some problems, pitfalls, and
paradoxes in educational measurement. Educational
Measurement: Issues and Practices, 20{4), 6-18.

Campbell, D. T, & Erlebacher, A. (1975). How regres-
sion artifacts in quasiexperimental evaluations can mis-
takenly make compensatory education look harmfiil. In
M. Guttentag & E. L. Struening (Eds.), Handbook of
evaluation research (Vol. 1, pp. 597-617). Beverly Hills,
CA: Sage.

Exceptional Children 1 9 1



Chambless, D. (1998). Defining empirically supported
therapies. Journal of Consulting and Clinical Psychology,

6(5; 7-18.

Chandler, R. (1957). The statistical concepts of confi-
dence and significance. Psychological Bulletin, 54,
429^30.

Cliff, N. (1987). Analyzing multivariate data. San
Diego, CA: Harcourt Brace Jovanovich.

Cohen, J. (1968). Multiple regression as a general data-
analytic system. Psychological Bulletin, 70, 426—443.

Cohen, J. (1994). The earth is round (/) < .05). Ameri-
can Psychologist, 49, 997-1003.

Courville, T, & Thompson, B. (2001). Use of struc-
ture coefficients in published multiple regression arti-
cles: P is not enough. Educational and Psychological
Measurement, 61, Tl^-l^i.

Crocker, L., & Algina, J. (1986). Introduction to classi-
cal and modem test theory. New York: Holt, Rinehart &
Winston.

Cumming, G., & Finch, S. (2001). A primer on the
understanding, use and calculation of confidence inter-
vals that are based on central and noncentral distribu-
tions. Educational and Psychological Measurement, 61,

532-575.

Duncan, O. D. (1975). Introduction to structural equa-
tion models. New York: Academic Press.

Dunlap, W. P., & Landis, R. S. (1998). Interpretations
of multiple regression borrowed from factor analysis
and canonical correlation. The Journal of General Psy-
chology, 125, 397-407.

Fan, X., & Thompson, B. (2001). Confidence intervals
about score reliability coefficients, please: An EPM
guidelines editorial. Educational and Psychological Mea-
surement, 61, 517-531.

Feuer, M. J., Towne, L., & Shavelson, R. J. (2002). Sci-
entific culture and educational research. Educational
Researcher, 31{8), 4-14.

Fidler, F (2002). The fifth edition of the APA Publica-
tion Manual: Why its statistics recommendations are so
controversial. Educational and Psychological Measure-
ment, 62, 749-770.

Fidler, F, Thomason, N., Cumming, G., Finch, S. &
Leeman, J. (2004). Editors can lead researchers to con-
fidence intervals, but they can't make them think: Sta-
tistical reform lessons from medicine. Psychological
Science, 15, 119-127.

Fish, L. J. (1988). Why multivariate methods are usu-
ally vital. Measurement and Evaluation in Counseling
and Development, 21, 130-137.

Gall, M. D., Borg, W. R., & Gall, J. P (1996). Educa-
tional research: An introduction (6th ed.). White Plains,
NY: Longman.

Glass, G. V., McGaw, B., & Smith, M. L. (1981).
Meta-analysis in social research. Beverly Hills, CA: Sage.

Gorsuch, R. L. (1983). Eactor analysis (2nd ed.). Hills-
dale, NJ: Erlbaum.

Graham, J. M., Guthrie, A. C , & Thompson, B.
(2003). Consequences of not interpreting structure co-
efficients in published CFA research: A reminder. Struc-
tural Equation Modeling, 10, 142-153.

Harlow, L. L., Mulaik, S. A., & Steiger, J. H. (Eds.).
(1997). What if there were no significance tests? Mahwah,
NJ: Erlbaum.

Hester, Y. C. (2000). An analysis of the use and misuse
of ANOVA. (Doctoral dissertation, Texas A&M Uni-
versity, 2000). Dissertation Abstracts International, 61,
4332A. (UMI No. 9994257)

Huberty, C. J. (1994). Applied discriminant analysis.
New York: Wiley & Sons.

Huberty, C. J. (2002). A history of effect size indices.
Educational and Psychological Measurement, 62,
227-240.

Jacobson, N. S., Roberts, L. J., Berns, S. B., &
McGlinchey, J. B. (1999). Methods for defining and
determining the clinical significance of treatment ef-
fects: Description, application, and alternatives. Journal
of Consulting and Clinical Psychology, 67, 300-307.

Joreskog, K. G. (1969). A general approach to confir-
matory maximum likelihood factor analysis. Psychome-
trika,34, 183-220.

Joreskog, K. G. (1970). A general method for analysis
of covariance structures. Biometrika, 57, 239-251.

Joreskog, K. G. (1971). Simultaneous factor analysis in
several populations. Psychometrika, 36, 409—426.

Joreskog, K. G. (1978). Structural analysis of covari-
ance and correlation matrices. Psychometrika, 43,
443-477.

Joreskog, K. G., & Sorbom, D. (1989). LISREL 7: A
guide to the program and applications (2nd ed.).
Chicago: SPSS.

Kendall, P. C. (1999). Clinical significance. Journal of
Consulting and Clinical Psychology, 67, 283—284.

Kerlinger, F. N. (1986). Eoundations of behavioral re-
search (3rd ed.). New York: Holt, Rinehart & Winston.

Keselman, H. J., Huberty, C. J, Lix, L. M., Olejnik, S.,
Cribbie, R., Donahue, B., et al. (1998). Statistical prac-
tices of educational researchers: An analysis of their
ANOVA, MANOVA and ANCOVA analyses. Review
of Educational Research, 68, 350-386.

1 9 2 Winter 2005



KiefFer, K. M., Reese, R. J., & Thompson, B. (2001).
Statistical techniques employed in AERJ and JCP arti-
cles from 1988 to 1997: A methodological tevxevi. Jour-
nal of Experimental Education, 69, 280-309.

Kirk, R. (1996). Practical significance: A concept
whose time has come. Educational and Psychological
Measurement, 56, 746-759.

Kline, R. (2004). Beyond significance testing: Reforming
data analysis methods in behavioral research. Washing-
ton, DC: American Psychological Association.

Knapp, T. R. (1978). Canonical correlation analysis: A
general parametric significance testing system. Psycho-
b^cal Bulletin, S5, 410-416.

Ludbrook, J., & Dudley, H. (1998). Why permutation
tests are superior to t and F tests in medical research.
The American Statistician, 52, 127-132.

McLean, J. E., & Kaufman, A. S. (2000). Editorial:
Statistical significance testing and other changes to Re-
search in the Schools, 7(2), 1—2.

Mosteller, R, & Boruch, R. (Eds.). (2002). Evidence
matters: Randomized trials in education research. Wash-
ington, DC: Brookings Institution Press.

Nickerson, R. S. (2000). Null hypothesis significance
testing: A review of an old and continuing controversy.
Psychological Methods, 5, 241-301.

Olejnik, S., & Algina, J. (2000). Measures of effect size
for comparative studies: Applications, interpretations,
and limitations. Contemporary Educational Psychology,
25, 241-286.

Pedhazur, E. J. (1982). Multiple regression in behavioral
research: Explanation and prediction (2nd ed.). New
York: Holt, Rinehart & Winston.

Sackett, D. L., Straus, S. E., Richardson, W. S., Rosen-
berg, W., & Haynes, R. B. (2000). Evidence-based
medicine: How to practice and teach EBM (2nd ed.).
New York: Churchill Livingstone.

Schmidt, E L. (1996). Statistical significance testing and
cumulative knowledge in psychology: Implications for the
training of researchers. Psychological Methods, 1, 115—129.

Schmidt, E L., & Hunter, J. E. (1977). Development
of a general solution to the problem of validity gtnail-
vLiLxion. Journal of Applied Psychology, 62, 529-540.

Shavelson, R. J., & Towne, L. (Eds.). (2002). Scientific
research in education. Washington, DC: National
Academy Press.

Smithson, M. (2001). Correct confidence intervals for
various regression effect sizes and parameters: The im-
portance of noncentral distributions in computing in-
tervals. Educational and Psychological Measurement, 61,
605-632.

Snyder, P. (1991). Three reasons why stepwise regres-
sion methods should not be used by researchers. In B.
Thompson (Ed.), Advances in educational research: Sub-
stantive findings, methodological developments (Vol. 1,
pp. 99-105). Greenwich, CT: JAI Press.

Snyder, P. (2000). Cuidelines for reporting results of
group quantitative investigations. Journal of Early Inter-
vention, 23, 145-150.

Snyder, P., & Lawson, S. (1993). Evaluating results
using corrected and uncorrected effect size estimates.
Journal of Experimental Education, 61, 334-349.

Spearman, C. (1904). The proof and measurement of
association between two things. Journal of Psychology,
/5 , 72-101.

Steiger, J. H., & Fouladi, R. T. (1992). R^: A computer
program for interval estimation, power calculation, and
hypothesis testing for the squared multiple correlation.
Behavior Research Methods, Instruments, and Computers,
4, 581-582.

Thompson, B. (l984). Canonical correlation analysis:
Uses and interpretation. Newbury Park, CA: Sage.

Thompson, B. (1986). ANOVA versus regression anal-
ysis of ATI designs: An empirical investigation. Educa-
tional and Psychological Measurement, 46, 917-928.

Thompson, B. (1992). Misuse of ANCOVA and re-
lated "statistical control" procedures. Reading
Psychology, 13, iii—xviii.

Thompson, B. (1995). Stepwise regression and stepwise
discriminant analysis need not apply here: A guidelines
editorial. Educational and Psychological Measurement,
55, 525-534.

Thompson, B. (1996). AERA editorial policies regard-
ing statistical significance testing: Three suggested re-
forms. Educational Researcher, 25(2), 26-30.

Thompson, B. (1998a). In praise of brilliance: Where
that praise really belongs. American Psychologist, 53,
799-800.

Thompson, B. (1998b, July). The ten commandments of
good Structural Equation Modeling behavior: A user-
fiiendly, introductory primer on SEM. Paper presented at
the annual meeting of the U.S. Department of Educa-
tion, Office of Special Education Programs Project Di-
rectors' Conference, Washington, DC. (ERIC
Document Reproduction Service No. ED 420 154)

Thompson, B. (1999a, April). Common methodology
mistakes in educational research, revisited, along with a
primer on both effect sizes and the bootstrap. Paper pre-
sented at the annual meeting of the American Educa-
tional Research Association, Montreal, Canada. (ERIC
Document Reproduction Service No. ED 429 110)

Exceptional Children 1 9 3



Thompson, B. (1999b). Improving research clarity and
usefulness with effect size indices as supplements to sta-
tistical significance tests. Exceptional Children, 65,
329-337.

Thompson, B. (2000a). Canonical correlation analysis.
In L. Grimm & P. Yarnold (Eds.), Reading and under-
standing more multivariate statistics (pp. 285-316).
Washington, DC: American Psychological Association.

Thompson, B. (2000b). Ten commandments of struc-
tural equation modeling. In L. Grimm & P. Yarnold
(Eds.), Reading and understanding more multivariate
statistics (pp. 261-284). Washington, DC: American
Psychological Association.

Thompson, B. (2001). Significance, effect sizes, step-
wise methods, and other issues: Strong arguments move
the ?ie\A. Journal of Experimental Education, 70, 80—93.

Thompson, B. (2002a). "Statistical," "practical," and
"clinical": How many kinds of significance do coun-
selors need to consider? Journal of Counseling and De-
velopment, 80, 64-71.

Thompson, B. (2002b). What future quantitative social
science research could look like: Confidence intervals
for effect sizes. Educational Researcher, 31(5), 24—31.

Thompson, B. (Ed.). (2003). Score reliability: Contempo-
rary thinking on reliability issues. Newbury Park, CA: Sage.

Thompson, B. (in press-a). Research synthesis: Effect
sizes. In G. Camilli, P. B. Elmore, & J. Green (Eds.),
Complementary methods for research in education. Wash-
ington, DC: American Educational Research Association.

Thompson, B. (in press-b). The "significance" crisis in
psychology and education. Journal ofSocio-Economics.

Thompson, B., & Borrello, G. M. (1985). The impor-
tance of structure coefficients in regression research.
Educational and Psychological Measurement, 45,
203-209.

Vacha-Haase, T. (1998). Reliability generalization: Ex-
ploring variance in measurement error affecting score
reliability across studies. Educational and Psychobgical
Measurement, 58, 6-20.

Vacha-Haase, T, Henson, R. K., & Caruso, J. (2002).
Reliability generalization: Moving toward improved
understanding and use of score reliability. Educational
and Psychological Measurement, 62, 562-569.

Vacha-Haase, T., Kogan, L. R., & Thompson, B.
(2000). Sample compositions and variabilities in pub-
lished studies versus those in test manuals: Validity of
score reliability inductions. Educational and Psychobgi-
cal Measurement, 60, 509-522.

Vacha-Haase, T, Nilsson, J. E., Reetz, D. R., Lance, T.
S., & Thompson, B. (2000). Reporting practices and

APA editorial policies regarding statistical significance
and effect size. Theory & Psychology, 10, 413-425.

Whittington, D. (1998). How well do researchers re-
port their measures? An evaluation of measurement in
published educational research. Educational and Psycho-
logical Measurement, 58, 21-37.

Wilcox, R. R. (1998). How many discoveries have been
lost by ignoring modern statistical methods? American
Psychologist, 53, 300-314.

Wilkinson, L, & APA Task Force on Statistical Infer-
ence. (1999). Statistical methods in psychology jour-
nals: Guidelines and explanations. American
Psychologist, 54, 594-604. [reprint available through
the APA Home Page: http://www.apa.org/
journals/amp/amp548594.html]

Wright, S. (1921). Correlation and ausaiity. Journal of
Agricultural Research, 20, 557-585.
Wright, S. (1934). The method of path coefficients.
Annals of Mathematical Statistics, 5, 161-215

ABOUT THE AUTHORS

BRUCE THOMPSON (CEC TX Federation),
Texas A & M University and Baylor College of
Medicine, College Station, Texas, KAREN E. DI-
AMOND (CEC IN Federation), Professor and Di-
rector, Child Development Laboratory School,
Purdue University, W. Lafayette, Indiana, ROBIN
MCWILLIAM, Director, Center for Child Devel-
opment, Professor of Pediatrics and Special Edu-
cation, Vanderbilt University Medical Center,
Nashville, Tennessee. PATRICIA SNYDER
(CEC #514), Associate Dean for Research and
Graduate Studies, Louisiana State University
Health Science Center, New Orleans, SCOTT W.
SNYDER (CEC #144), School of Education
Dean's Office, University of Alabama, Birming-
ham.

Correspondence concerning this article should be
addressed to Bruce Thompson, TAMU Depart-
ment of Educational Psychology, Texas A&M
University, College Station, TX 77843-4225, or
via e-mail using the Internet URL:
http://www.coe.tamu.edu/-bthompson.

Manuscript received January 2004; accepted April
2004.

1 9 4 Winter 2005




